5-Hydroxymethylfurfural and Furfural Base-Free Oxidation over AuPd Embedded Bimetallic Nanoparticles

The heterogeneous catalytic partial oxidation of alcohols and aldehydes in the liquid phase usually needs the addition of a homogeneous base, which in turn makes the products’ recovery cumbersome, and can further induce undesired side reactions. In the present work, we propose the use of novel catalysts based on metallic Au, Pd and bimetallic AuPd nanoparticles embedded in a titanosilicate matrix. The as-prepared catalysts showed good efficiency in the base-free partial oxidation of furfural and 5-hydroxymethylfurfural. Au4Pd1@SiTi catalyst showed high selectivity (78%) to monoacids (namely, 5-formyl-2-furancarboxylic acid and 5-hydroxymethyl-2-furancarboxylic acid) at 50% 5-hydroxymethylfurfural (HMF) conversion. The selectivity even reached 83% in the case of furfural oxidation to furoic acid (at 50% furfural conversion). The performances of the catalysts strongly depended on the Au–Pd ratio, with an optimal value of 4:1. The pH of the solution was always below 3.5 and no leaching of metals was observed, confirming the stabilization of the metal nanoparticles within the titanosilicate host matrix.